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Abstract

We have used molecular dynamics modeling to investigate the stucture and mechanical properties of regen-
erated cellulose fibres. This work is motivated by continued interest in replacing the environmentally haz-
ardous viscose process by alternative spinning methods. An important input parameter for any realistic
model of the elastic properties is the stiffness tensor of the crystalline constituent, cellulose II. Conven-
tional molecular mechanics techniques can be used to estimate the elastic reaction of a material with re-
spect to small external stresses or strains, i.e. the compliance and stiffness tensors, and the elastic moduli
derived therefrom, at zero temperature. In order to access non-zero temperatures, it is necessary to use
either the quasi-harmonic approximation for the vibrational free energy or molecular dynamics (MD)
simulations. In the present work, Parrinello-Rahman constant-stress MD was performed to generate trajec-
tories in constant particle number (N), constant external stress tensor (p or t) and constant enthalpy H (NpH
or HtN) ensemble. This was found to be less time consuming than working with isothermal conditions, as
done by other authors. The fluctuations in kinetic energy and MD cell vectors were then used to calculate
adiabatic elastic constants, thermal expansion coefficients and heat capacity. The isothermal elastic con-
stants were found by applying a standard thermodynamic relation. The Young’s modulus along the chain
direction, El, was determined to be 155 GPa, whereas the values in the perpendicular directions vary be-
tween 51 and 24 GPa. These results are of the same order of magnitude as those obtained by Tashiro and
Kobayashi [1] with the static (T = 0K) method, but our value of El is 5% lower and, unexpectedly, the lateral
values are up to six times higher. A strong anisotropy is found for shear along the chains in planes contain-
ing the chain axis, the shear modulus ranging from 5 to 20 GPa. Convergence was achieved in the simulations,
to the extend that the elastic constants become stationary, but significant internal stresses remain, pointing
to shortcomings in the software used. Further work is necessary to resolve these problems, although the
major conclusions should be unaffected.
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Introduction

The cellulose II polymorphic structure [2, 3] is character-
istic of regenerated or Mercerized cellulose fibers. The me-
chanical properties of these materials depend on the struc-
ture of the individual molecules and their mutual interac-
tions, to the degree to which an optimum structure has been
attained [4]. One of the most simple sets of parameters de-
scribing the mechanical behavior of an array of polymer
chains consists of the components of the three-dimensional
small strain elastic constant or stiffness matrix C, and their
reciprocals, i.e. the compliances, S = C-1. Cellulose II has
an approximately monoclinic P21 space group, which has
13 independent stiffness components [5]. A full experi-
mental determination of these parameters is out of the ques-
tion, but the Young’s modulus of fibres can be determined
by following the stress induced shifts of the X-ray diffrac-
tion peaks due to lattice deformation, provided that the
relation between external load and local crystalline stress
is known (or can reasonably be assumed). Estimates of El
for semicrystalline, regenerated cellulose fibers are re-
ported in the range of 70 - 112 GPa [6-9].

Theoretical calculations employing appropriate force
fields allow the determination of the whole stiffness ten-
sor [10]. For cellulose, such calculations have been per-
formed by Tashiro and Kobayashi [1], leading to a value
for El for cellulose II of 162 GPa [10]. A considerably lower
value of 86 GPa was obtained by Kroon-Batenburg et al.
[11], who considered only a single chain and used a mark-
edly different force field. The main shortcoming of such
calculations is their static character, i.e. the mechanical
parameters are calculated for the minimum energy struc-
ture, which is effectively for 0 K.

Non-static methods for the calculation of stiffness ten-
sors at non-zero temperatures have only recently been ap-
plied to polymer crystals. Lacks and Rutledge [12] have
used the quasi-harmonic approximation for the vibrational
free energy (in both the classical and quantum mechanical
formulations) to allow for the thermal vibrations of the at-
oms, and have calculated the stiffness tensor for
polyethylene at several temperatures in the range from 0
to 400 K. Gusev et al. [13-15] have employed Parrinello-
Rahman constant-stress molecular dynamics (MD) [16]
with a Nosé-Hoover thermostat [17, 18] to calculate iso-
thermal stiffness tensors for polyethylene from the corre-
sponding fluctuation formula [19].

In the present work, Parrinello-Rahman MD simulations
have been performed for cellulose II in order to calculate
the adiabatic stiffness, thermal expansion and heat capac-
ity using the fluctuation formulae due to Ray [20]. In con-
trast to the work of Gusev et al. [13-15], we have employed
less time consuming simulations utilizing a constant
enthalpy H, tension t and particle number N (HtN) ensem-
ble. The isothermal stiffness tensor was calculated from
standard thermodynamic relations [21].

Method

According to Andersen [22], Parrinello and Rahman [16],
and Ray [23, 24], MD in a scaled and augmented Hamilto-
nian system can be used to simulate constant stress condi-
tions. This leads to a time-dependent MD cell with fluctu-
ating cell vectors a, b, c, which are summarized in the cell
matrix h:
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Here, h0 is the average h matrix in a zero stress situation,
and the prime indicates matrix transposition. The instan-
taneous and average volumes, V and V0, are given by the
determinants V = det(h) and V0 = det(h0), respectively.
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is the derivative of the potential energy function U of the
system, which depends on the set {r c - rd} of the interatomic
distance vectors between atoms c and d at positions r c and
rd in the unscaled system and m means the dyadic product
for vectors. The linear momentum pa of atom a with mass
ma is also taken in the unscaled system, and is different
from the time derivative of r a [23]. For molecular systems
the angle bending and torsional forces are not central, with
a result that fab is not parallel to r a - r b , giving a non-sym-
metric instantaneous stress tensor [25, 26].

We define δ(ab) as the fluctuation of two quantities a
and b according to

δ ( )ab ab a b= 〈 〉 − 〈 〉〈 〉

where <...> designates the HtN ensemble average, which
is equal to the trajectory average after equilibration. The
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adiabatic elastic constant (stiffness) tensor C is given by
[16]

δ ε ε( ) ,ij kl ijkl

kT

V
C= −1 (3)

where T=2<K>/3Nk is the instantaneous temperature and
K = Σpa

2/2ma is the kinetic energy, k is Boltzmann’s con-
stant, and N is the number of atoms. The heat capacity Cp
and the thermal expansion tensor, αp (both for constant
stress), can be determined [20] from
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allowing for calculation of the isothermal elastic stiffness,
TC[21]
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To control the convergence to equilibrium, Gusev et al.
[13] compared averaged stress-strain products (invariants)
with their equilibrium values (0, 0.5 and 1) according to

V

kT ij kl
ik jl il jk〈 〉 =

+
σ ε

δ δ δ δ
2

, (7)

where δij  is the Kronecker symbol: δij  = 1 for i = j and 0
otherwise.

Experimental

Molecular models for cellulose II were based on the X-ray
work by Kolpak and Blackwell [2], which is similar to the
structure also proposed by Stipanovich and Sarko [3]. The
structure is described by a monoclinic unit cell (space
group P21) with dimensions a = 8.01 Å, b = 9.04 Å, c (fiber
axis) = 10.36 Å, and γ = 117.1° [2], containing disaccha-
ride units of two chains of opposite sense that pass through
the origin and center of the ab projection. As described in
refs. 2 and 3, the two chains have identical backbone con-
formations, but differ in the conformations of the CH2OH
side chains, which are gauche-trans (gt) on one chain and
trans-gauche (tg) on the other. Recent work by Gessler et
al. [27] has determined the structure of cellotetraose by
single crystal methods, which is thought relevant to cellu-
lose II because of the close similarity of the polymer and

Figure 1. Snapshot of the simulated cellulose II MD cell
containing 12 cellulose chains of four anhydroglucose units,
viewed along the c direction.

tetramer unit cells. In the cellotetraose unit cell, the two
molecules have the same CH2OH conformations (gt), but
have slightly different backbone conformations. We have
elected to retain the published cellulose II structure as the
starting model. However, there is more than sufficient free-
dom for rearrangement to the all-gt model during the dy-
namic modeling, and it will be seen that such a change does
not in fact occur.

Construction of the molecular models, energy minimi-
zation and MD was accomplished using the Biosym mo-
lecular modeling software [28] on a Silicon Graphics Power
Series 4D 220 GTXB computer. A unit cell was constructed
according to the structural features described above, us-

Figure 2. Frequency distribution of MD cell lengths a, b,c
and angles α, β, γ in a 100 ps HtN run. The solid lines are
best fit Gaussian distributions for these data.
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Figure 3. Running averages of the adiabatic elastic
constants (components of C)  obtained by HtN-MD after
440 ps of relaxation. left: non-zero components; right:
components predicted to be zero by symmetry.

odic boundary conditions (pbc) in the HtN mode, these
being three times faster than isothermal ensemble calcula-
tions. A time step of 1 fs was used together with a charge
group-based cutoff of 9.5 Å (full interaction up to 8.5 Å)
both for van der Waals and Coulombic forces, a dielectric
constant of 1, default bond increments of the force field
for assigning net atomic charges, a cell mass parameter of
20 atomic units, and the velocity Verlet integrator [28].
Simulations were carried through up to 540 ps. Cross terms
were not included in the force field and a simple quadratic
potential was used instead of a Morse term for the bond
length oscillations. A starting temperature of 602 K was
found appropriate to reach the target temperature of 298
K. However, a slight heating up to 303.5 K after 500 ps
was observed. After some 10 ps, the average shape of the
MD cell reached the final form described by the average
unit cell dimensions given in Table 1. The relatively large
c value of 10.74 Å as compared to the experimental value
of 10.36 Å [2] is viewed as a defect of the force field, but
is not expected to have more than a minor influence on the
results of the simulations.

The quantities of interest: cell parameters, kinetic en-
ergy and instantaneous microscopic stress tensor deter-
mined by the DISCOVER program [28] were saved every
10 fs. Our coordinate system has the same orientation as
that of Tashiro and Kobayashi [1], i.e. the c axis is parallel
to z and the b axis lies in the z y plane. The contracted
notation [5] for tensor indices (11->1, 22->2, 33->3, 23-
>4, 13->5, 12->6) is used for fourth rank tensors. The cell
matrix h was constructed from the cell parameters, and h0
was obtained by averaging h over the whole run. εεεεε was
calculated according to eq. (1) for every tenth point on the
trajectory.

ing the default molecular geometry contained in the soft-
ware package [28] except that the torsion angles at the gly-
cosidic linkages, the CH2OH conformations, and the mu-
tual stagger of the center and corner chains along the z
axis were taken from reference [2]. The force field was
chosen by comparing energy minimizations with periodic
boundary conditions (pbc) for the unit cell with variable
cell dimensions using the CVFF [29, 30], PCFF [31] and
AMBER [32-34] force fields from the DISCOVER program
[28]. All three force fields produced structures similar to
that in reference [2] with deviations in a, b, c and γ of less
than 5 % (α and β were very close to 90°). The calculated
density was always somewhat lower than the experimen-
tal value of 1.61 g/cm3, but this difference did not exceed
5 %. Even a perfect match in the static structure would not
assure the quality of the force field in dynamic simulations.
Since there was little difference between the results using
different force fields, we used the original CVFF force field.

The MD cell consisted of three unit cells in the a direc-
tion and two each in the b and c directions. (The use of
larger cells resulted in prohibitive long calculation times.)
The simulations were performed with application of peri-

ρρρρρ [g/cm3] a [Å] b [Å] c [Å] ααααα [o] βββββ [o] γγγγγ [o]

X-ray [1] 1.61 8.01 9.04 10.36 90 90 117.1
MD 1.54 7.80 9.31 10.74 90 90 116.6
∆ [%] -5 -3 3 4 - - -1

Table 1. Density ∆, unit cell lengths a, b, c and angles α, β,
γas determined by X-ray structure analysis [2] and the
present MD calculations as well as relative deviations)
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Figure 4. Young’s modulus perpendicular to the chain
direction as a function of orientation. The distance from the
origin to the bold line is proportional to the modulus.

Figure 5. Shear modulus for the planes containing the c axis
as a function of orientation.  The distance from the origin to
the bold line in a given direction is proportional to the
modulus for shear along c in the plane containing c and that
direction.

Results and Discussion

A snapshot of the MD cell at 300 K after 540 ps of simula-
tion time viewed along the chain direction c is shown in
Figure 1. A short animation of the trajectory of the system
showed that the hydrogen bond system as described in [2]
and [3] is essentially maintained. As mentioned above, the
structure does not rearrange to the all-gt bonding scheme
found in the crystal structure of cellotetraose by single
crystal determination [27].

Figure 2 shows the frequency distribution of the MD
cell lengths and angles over a 100 ps run (i.e. 10000 data
points). It can be seen that there are good fits to the best
(least squares) Gaussian distributions, indicating an ap-
propriate choice of the cell mass parameter. As is to be ex-
pected, the covalent bonds of the polymer chains restrict
the cell motion in the c direction; there is more freedom in
the non bonded directions, and a shows a slightly broader
distribution than b. The „weakest“ unit cell angle is α, in-
dicating a relatively easy gliding of the 020 planes past
each other, which is consistent with the anisotropy of the
shear modulus (see below).

Figure 3 shows running averages of the 13 non-zero
and the 8 vanishing adiabatic elastic constants calculated
according to eq. (3) for a 100 ps run starting after 440 ps
of relaxation. The final values averaged over 100 ps after
540 ps are
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−
− −
− −

− − − −
− −

− − − − −

























42.2 24.5 30.0 8.1

24.5 56.7 12.5 5.9

30.3 12.5 177.2 6.8

8.1 6.2

6.2 17.3

8.1 5.9 6.8 15.1

0 0 2

01 0 0

0 3 0 7

0 0 1 0 3 01

0 2 0 0 0 7 01

01 01

.4 .

. .

. .

.4 . . .

. . . .

. .

.

E
1
[GPa] E

2
[GPa] El[GPa] ν

12
ν

13
ν

21

26.4 42.2 154.6 0.37 0.13 0.59

ν
23

ν
31

ν
32

G
1
[GPa] G

2
[GPa] G

3
[GPa]

-0.03 0.78 -0.12 13.5 12.6 5.9

Table 2. Young’s moduli Ei, Poisson ratios ν
ij
 and shear

moduli G
i
 as calculated from the stiffness constant tensor C
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The directional dependence of the Young’s modulus per-
pendicular to the chain direction Eϕ([1], [5]) as calculated
from C is visualized in Figure 4, where the distance from
the origin to the bold line is proportional to the modulus in
that direction. The „stiffest“ direction is close to [11 0] ,
where deformation requires stretching or compressing the
hydrogen bonds, for which the modulus is 51.4 GPa. The
„most compliant“ direction is close to [110], where a
change in the O-H···O bond angle would be sufficient to
allow deformation, and has a modulus of 23.9 GPa.

Figure 5 shows an analogous plot of the shear modulus
G(ϕ) [5] for planes containing the chain direction with re-
spect to forces along this direction. n is the inclination an-
gle of the shear plane with the x axis, i.e. G23 is found along
the x axis and G13 along the y axis. The anisotropy is seen
to be even more pronounced than that for Eϕ. G = 20.0 GPa
close to the1 10 plane, which is stabilized in many ways
by valence forces. This is about four times greater than the
value for shear close to the weaker bound 110 sheets. Our
predictions correlate with the comparatively broad fre-
quency distribution for α in Figure 2.

The running averages of the invariants according to eq.
(7) are shown for the last 90 ps of the simulation in Figure
6. The values at the end of the run are
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Ideally, the off-diagonal terms should be zero. However,
the 16, 61, 26, 62, 45 and 54 components deviate consid-
erably from their equilibrium values of zero and show no
tendency to converge further. (The same effect was noticed
in earlier runs, from 240 to 340 and from 340 to 440 ps). In
addition, the microscopic stress tensor output by the
Biosym DISCOVER program [28] (which gives only six
components, thus assuming the tensor to be symmetric)
does not converge to zero after 540 ps for our t = 0 simula-
tion, as shown in Figure 7. Similar problems have been
encountered in a constant stress isothermal simulation of
isotactic polypropylene crystals [35]. Furthermore, the
average of σσσσσVh’ -1 gave non-zero values. This is not the
correct behaviour, as one can see by averaging the differ-
ential equation for h [36]. A variation of the cell mass pa-
rameter did not lead to significantly different results, sug-
gesting that the above effect is not due to incomplete con-
vergence. The asymmetrical rotational components of the
cell dynamics could not be studied because the cell tensor
h is not evaluated as such, but has to be recalculated from
the MD cell dimensions. However, these problems relate
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Figure 6. Running averages of diagonal (above) and non-
diagonal (below) invariants V<σ

ij
ε

kl
>/(kT). Relatively large

deviations from zero are seen in for the 16, 61, 26, 62, 45
and 54 components.

The components predicted to be zero on the basis of
symmetry are shown in non-bold face. The value of El =
155 GPa calculated from this stiffness matrix is slightly
lower than the value of 162 GPa determined by Tashiro
and Kobayashi for 0 K [1]. None of our figures for the non-
vanishing components are as close to zero as are those for
C13, C16, C23 and C36 reported by Tashiro and Kobayashi
[1]. Except for the stiffness in chain direction, (C33), the
remaining components in the present work are two to six
times higher. This may be due to differences in the force
field or an effect of disregarding the lack of symmetry in
the microscopic stress tensor in the Biosym software [28]
(see below). The stiffness components for cellulose II other
than C33 are also comparatively high compared to those
reported (5 - 9 GPa) in simulations of polyethylene and
isotactic polypropylene [13, 14], most probably due to the
rich hydrogen bond system maintained in the present room
temperature simulations. The Young’s moduli, Poisson ra-
tios and shear moduli as calculated from the stiffness ten-
sor C are given in Table 2.
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and TC. A comparison with the constant temperature
simulations (TtN ensemble) could reveal deficiencies in
the force field and/or the sampling method.

Conclusions

Room temperature adiabatic elastic constants, thermal ex-
pansion coefficients and heat capacity of cellulose II have
been calculated using constant stress molecular dynam-
ics. During the simulation, the system remained close to
the starting configuration, maintaining a dense hydrogen
bond network very similar to that found by X-ray crystal
structure analysis. Compared to other polymers, the lat-
eral stiffness of cellulose II is high, which is most prob-
ably due to the intra- and inter- molecular hydrogen bond
system. The isothermal elastic constants do not differ from
the adiabatic values within the limitations of the calcula-
tion. Thermal expansion coefficients are somewhat low,
whereas the specific heat is found to be almost exactly that
of Dulong and Petit’s rule.

Although convergence was achieved in the sense that
the stiffness tensor remains constant for prolonged simu-
lation times, terms in the averaged microscopic stress ten-
sor differ considerably from their expected zero values and
showed no tendency to converge further. It seems likely
that this was caused by the use of a symmetric instantane-
ous stress tensor in in the commercial software used.

Acknowledgement: The support of the German Academic
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gratefully acknowledged.
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